Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Elife ; 122024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349818

RESUMO

Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 Å resolution (extending to 2.2 Å at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 Å resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (KD) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.


Assuntos
Haemophilus influenzae , Ácido N-Acetilneuramínico , Haemophilus influenzae/metabolismo , Microscopia Crioeletrônica , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo
2.
PLoS One ; 18(6): e0280009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384723

RESUMO

Diploptera punctata, also known as the Pacific beetle cockroach, is a viviparous cockroach that gives birth to live offspring and secretes a highly concentrated mixture of glycosylated proteins as a source of nourishment for developing embryos. These proteins are lipocalins that bind to lipids and crystallize in the gut of the embryo. A structure of milk crystals harvested from the embryos showed that the milk-derived crystals were heterogeneous and made of three proteins (called Lili-Mips). We hypothesized that the isoforms of Lili-Mip would display different affinities for fatty acids due to the ability of the pocket to bind multiple acyl chain lengths. We previously reported the structures of Lili-Mip from crystals grown in vivo and recombinantly expressed Lili-Mip2. These structures are similar, and both bind to several fatty acids. This study explores the specificity and affinity of fatty acid binding to recombinantly expressed Lili-Mip 1, 2 & 3. We show that all isoforms can bind to different fatty acids with similar affinities. We also report the thermostability of Lili-Mip is pH dependent, where stability is highest at acidic pH and declines as the pH increases to physiological levels near 7.0. We show that thermostability is an inherent property of the protein, and glycosylation and ligand binding do not change it significantly. Measuring the pH in the embryo's gut lumen and gut cells suggests that the pH in the gut is acidic and the pH inside the gut cells is closer to neutral pH. In various crystal structures (reported here and previously by us), Phe-98 and Phe-100 occupy multiple conformations in the binding pocket. In our earlier work, we had shown that the loops at the entrance could adapt various conformations to change the size of the binding pocket. Here we show Phe-98 and Phe-100 can reorient to stabilize interactions at the bottom of the cavity-and change the volume of the cavity from 510 Å3 to 337 Å3. Together they facilitate the binding of fatty acids of different acyl chain lengths.


Assuntos
Baratas , Proteínas do Leite , Animais , Fenilalanina , Leite , Ácidos Graxos
3.
Biochem J ; 480(13): 975-997, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37335080

RESUMO

Enzymes are either specific or promiscuous catalysts in nature. The latter is portrayed by protein families like CYP450Es, Aldo-ketoreductases and short/medium-chain dehydrogenases which participate in detoxification or secondary metabolite production. However, enzymes are evolutionarily 'blind' to an ever-increasing synthetic substrate library. Industries and laboratories have circumvented this by high-throughput screening or site-specific engineering to synthesize the product of interest. However, this paradigm entails cost and time-intensive one-enzyme, one-substrate catalysis model. One of the superfamilies regularly used for chiral alcohol synthesis are short-chain dehydrogenases/reductases (SDRs). Our objective is to determine a superset of promiscuous SDRs that can catalyze multiple ketones. They are typically classified into shorter 'Classical' and longer 'Extended' type ketoreductases. However, current analysis of modelled SDRs reveals a length-independent conserved N-terminus Rossmann-fold and a variable substrate-binding C-terminus substrate-binding region for both categories. The latter is recognized to influence the enzyme's flexibility and substrate promiscuity and we hypothesize these properties are directly linked with each other. We tested this by catalyzing ketone intermediates with the essential and specific enzyme: FabG_E, as well as non-essential SDRs such as UcpA and IdnO. The experimental results confirmed this biochemical-biophysical association, making it an interesting filter for ascertaining promiscuous enzymes. Hence, we created a dataset of physicochemical properties derived from the protein sequences and employed machine learning algorithms to examine potential candidates. This resulted in 24 targeted optimized ketoreductases (TOP-K) from 81 014 members. The experimental validation of select TOP-Ks demonstrated the correlation between the C-terminal lid-loop structure, enzyme flexibility and turnover rate on pro-pharmaceutical substrates.


Assuntos
Ensaios de Triagem em Larga Escala , Sequência de Aminoácidos , Catálise
4.
PLoS One ; 18(1): e0271654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36598911

RESUMO

In bacteria that live in hosts whose terminal sugar is a sialic acid, Glucosamine-6-phosphate deaminase (NagB) catalyzes the last step in converting sialic acid into Fructose-6-phosphate. These bacteria then use the Fructose-6-phosphate as an energy source. The enzyme NagB exists as a hexamer in Gram-negative bacteria and is allosterically regulated. In Gram-positive bacteria, it exists as a monomer and lacks allosteric regulation. Our identification of a dimeric Gram-negative bacterial NagB motivated us to characterize the structural basis of two closely related oligomeric forms. We report here the crystal structures of NagB from two Gram-negative pathogens, Haemophilus influenzae (Hi) and Pasturella multocida (Pm). The Hi-NagB is active as a hexamer, while Pm-NagB is active as a dimer. Both Hi-NagB and Pm-NagB contain the C-terminal helix implicated as essential for hexamer formation. The hexamer is described as a dimer of trimers. In the Pm-NagB dimer, the dimeric interface is conserved. The conservation of the dimer interface suggests that the three possible oligomeric forms of NagB are a monomer, a dimer, and a trimer of dimers. Computational modeling and MD simulations indicate that the residues at the trimeric interface have less stabilizing energy of oligomer formation than those in the dimer interface. We propose that Pm-NagB is the evolutionary link between the monomer and the hexamer forms.


Assuntos
Aldose-Cetose Isomerases , Proteínas de Bactérias , Haemophilus influenzae , Pasteurella multocida , Ácido N-Acetilneuramínico , Polímeros , Haemophilus influenzae/enzimologia , Pasteurella multocida/enzimologia
5.
Acta Crystallogr D Struct Biol ; 78(Pt 10): 1221-1234, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189742

RESUMO

Enzymes catalyze reactions by binding and orienting substrates with dynamic interactions. Horse liver alcohol dehydrogenase catalyzes hydrogen transfer with quantum-mechanical tunneling that involves fast motions in the active site. The structures and B factors of ternary complexes of the enzyme with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol or NAD+ and 2,2,2-trifluoroethanol were determined to 1.1-1.3 Šresolution below the `glassy transition' in order to extract information about the temperature-dependent harmonic motions, which are reflected in the crystallographic B factors. The refinement statistics and structures are essentially the same for each structure at all temperatures. The B factors were corrected for a small amount of radiation decay. The overall B factors for the complexes are similar (13-16 Å2) over the range 25-100 K, but increase somewhat at 150 K. Applying TLS refinement to remove the contribution of pseudo-rigid-body displacements of coenzyme binding and catalytic domains provided residual B factors of 7-10 Å2 for the overall complexes and of 5-10 Å2 for C4N of NAD+ and the methylene carbon of the alcohols. These residual B factors have a very small dependence on temperature and include local harmonic motions and apparently contributions from other sources. Structures at 100 K show complexes that are poised for hydrogen transfer, which involves atomic displacements of ∼0.3 Šand is compatible with the motions estimated from the residual B factors and molecular-dynamics simulations. At 298 K local conformational changes are also involved in catalysis, as enzymes with substitutions of amino acids in the substrate-binding site have similar positions of NAD+ and pentafluorobenzyl alcohol and similar residual B factors, but differ by tenfold in the rate constants for hydride transfer.


Assuntos
Álcool Desidrogenase , NAD , Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Aminoácidos/química , Animais , Álcoois Benzílicos/química , Álcoois Benzílicos/metabolismo , Sítios de Ligação , Carbono , Cristalografia por Raios X , Fluorbenzenos , Fluorocarbonos , Cavalos , Hidrogênio/química , Cinética , Fígado , NAD/química , Conformação Proteica , Temperatura , Trifluoretanol/química , Trifluoretanol/metabolismo
6.
Cytojournal ; 19: 44, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928534

RESUMO

Objectives: Fluids are one the most common specimens received in cytology laboratories. The presence of erythrocytes may obscure the cells in the smears, making the diagnosis, and identification of cells difficult. Many techniques are being used by laboratories to eliminate these erythrocytes. The present study was undertaken to improve the quality of cytology smears of hemorrhagic samples by comparing three different techniques, namely, Carnoy's fixative (CF), modified CF, and normal saline rehydration technique (NSRT) to hemolysis red blood cells (RBC) present in the smear background for better cytological assessment. The present study was a prospective study done over 1 year 6 months from November 2012 to March 2014, in the Department of Pathology in a Tertiary Care Rural Medical College. Materials and Methods: All hemorrhagic effusions received in the department of pathology were processed using CF, modified CF, and NSRT. The background of the smear and cytomorphological details with two different stains was analyzed. The Chi-square test was used to find out the association of different techniques in the reduction of RBC. Results: More than 60% reduction of RBCs in the smear was noted in 85.40%, 14.60%, and 15.60% by NSRT, modified CF, and CF, respectively. Staining was better and nuclear features were best preserved in NSRT. Conclusion: NSRT is the best, simple, and cheaper technique to lyse RBC in the hemorrhagic fluid. It also shows better staining and well-preserved cytomorphological features of the cell.

7.
RSC Adv ; 12(31): 20296-20304, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35919616

RESUMO

Biliverdin IX-alpha (BV), a tetrapyrrole, is found ubiquitously in most living organisms. It functions as a metabolite, pigment, and signaling compound. While BV is known to bind to diverse protein families such as heme-metabolizing enzymes and phytochromes, not many BV-bound lipocalins (ubiquitous, small lipid-binding proteins) have been studied. The molecular basis of binding and conformational selectivity of BV in lipocalins remains unexplained. Sandercyanin (SFP)-BV complex is a blue lipocalin protein present in the mucus of the Canadian walleye (Stizostedion vitreum). In this study, we present the structures and binding modes of BV to SFP. Using a combination of designed site-directed mutations, X-ray crystallography, UV/VIS, and resonance Raman spectroscopy, we have identified multiple conformations of BV that are stabilized in the binding pocket of SFP. In complex with the protein, these conformers generate varied spectroscopic signatures both in their absorption and fluorescence spectra. We show that despite no covalent anchor, structural heterogeneity of the chromophore is primarily driven by the D-ring pyrrole of BV. Our work shows how conformational promiscuity of BV is correlated to the rearrangement of amino acids in the protein matrix leading to modulation of spectral properties.

8.
BMC Rheumatol ; 6(1): 32, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35698182

RESUMO

BACKGROUND: We conducted this study to identify the influence of prolonged use of hydroxychloroquine (HCQ), glucocorticoids and other immunosuppressants (IS) on occurrence and outcome of COVID-19 in patients with autoimmune rheumatic diseases (AIRDs). METHODS: This was a prospective, multicenter, non-interventional longitudinal study across 15 specialist rheumatology centers. Consecutive AIRD patients on treatment with immunosuppressants were recruited and followed up longitudinally to assess parameters contributing to development of COVID-19 and its outcome. RESULTS: COVID-19 occurred in 314 (3.45%) of 9212 AIRD patients during a median follow up of 177 (IQR 129, 219) days. Long term HCQ use had no major impact on the occurrence or the outcome of COVID-19. Glucocorticoids in moderate dose (7.5-20 mg/day) conferred higher risk (RR = 1.72) of infection. Among the IS, Mycophenolate mofetil (MMF), Cyclophosphamide (CYC) and Rituximab (RTX) use was higher in patients with COVID 19. However, the conventional risk factors such as male sex (RR = 1.51), coexistent diabetes mellitus (RR = 1.64), pre-existing lung disease (RR = 2.01) and smoking (RR = 3.32) were the major contributing risk factors for COVID-19. Thirteen patients (4.14%) died, the strongest risk factor being pre-existing lung disease (RR = 6.36, p = 0.01). Incidence (17.5 vs 5.3 per 1 lakh (Karnataka) and 25.3 vs 7.9 per 1 lakh (Kerala)) and case fatality (4.1% vs 1.3% (Karnataka) and 4.3% vs 0.4% (Kerala)) rate of COVID-19 was significantly higher (p < 0.001) compared to the general population of the corresponding geographic region. CONCLUSIONS: Immunosuppressants have a differential impact on the risk of COVID-19 occurrence in AIRD patients. Older age, males, smokers, hypertensive, diabetic and underlying lung disease contributed to higher risk. The incidence rate and the case fatality rate in AIRD patients is much higher than that in the general population.

9.
FEBS Lett ; 596(6): 796-805, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35020202

RESUMO

Biliverdin IXα (BV) binds to several prokaryotic and eukaryotic proteins. How nature exploits the versatility of BV's properties is not fully understood. Unlike free BV, the Sandercyanin fluorescent protein bound to BV (SFP-BV) shows enhanced red fluorescence (675 nm) on excitation in the UV region (380 nm). Site-directed mutagenesis showed that the BV complex of two SFP variants, F55A and E79A, resulted in the loss of red fluorescence. Crystal structures of the complexes of these proteins with BV show the absence of stacking interactions of the F55 phenyl ring with BV. BV changes from ZZZssa conformation in the wild-type to ZZZsss conformation in the variants. In the nonfluorescent mutants, the lowest excited state is destabilized, resulting in nonradiative decay.


Assuntos
Biliverdina , Fenilalanina , Biliverdina/química , Mutagênese Sítio-Dirigida , Proteínas
10.
Biochim Biophys Acta Gen Subj ; 1866(3): 130064, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958847

RESUMO

BACKGROUND: The Pacific Beetle Cockroach is the only known viviparous cockroach. The pregnant females provide nutrition to the embryos by secreting milk proteins (Lili-Mips), which crystallize in vivo. The crystals that grow in the embryo are heterogeneous in their protein sequence. It is not apparent from the structure determined what role heterogeneity and glycosylation played in crystallization. Lili-Mips are very nutritious. METHODS: Here, we report the cloning of synthesized Lili-Mip genes, their expression in Saccharomyces cerevisiae as secreted proteins, purification, crystallization, and the determination of a three-dimensional structure of one glycosylated and one deglycosylated form. RESULTS: A 2.35 Å structure of the glycosylated form is bound to palmitoleic acid and has several Zn atom mediated interactions. A 1.45 Å structure of the deglycosylated protein reveals a binding pocket that has both oleic and palmitoleic acid bound. Mass-spectrometry shows that oleic acid and palmitoleic acid are bound to the protein. Docking studies suggest that aliphatic chains of lengths 15, 16, and 18 carbons bind well in the pocket. CONCLUSIONS: The recombinantly expressed and secreted protein is glycosylated, has a bound fatty acid, is homogenous in its protein sequences, and readily forms crystals. The deglycosylated protein also crystallizes readily, suggesting that the high crystallizability of this protein is independent of glycosylation. GENERAL SIGNIFICANCE: Lili-Mips belong to the ubiquitous lipocalin family of proteins that bind to a large variety of ligands. While the residues lining the barrel are essential for the affinity of the ligand, our results show the role of side-chain orientations to ligand selectivity.


Assuntos
Proteínas de Insetos
11.
Glycobiology ; 32(1): 36-49, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-34499167

RESUMO

O-Glycans on cell surfaces play important roles in cell-cell, cell-matrix and receptor-ligand interaction. Therefore, glycan-based interactions are important for tissue regeneration and homeostasis. Free-living flatworm Schmidtea mediterranea, because of its robust regenerative potential, is of great interest in the field of stem cell biology and tissue regeneration. Nevertheless, information on the composition and structure of O-glycans in planaria is unknown. Using mass spectrometry and in silico approaches, we characterized the glycome and the related transcriptome of mucin-type O-glycans of planarian S. mediterranea. Mucin-type O-glycans were composed of multiple isomeric, methylated, and unusually extended mono- and disubstituted O-N-acetylgalactosamine structures. Extensions made of hexoses and 3-O-methyl hexoses were the glycoforms observed. From glycotranscriptomic analysis, 60 genes belonging to five distinct enzyme classes were identified to be involved in mucin-type O-glycan biosynthesis. These genes shared homology with those in other invertebrate systems. Although a majority of the genes involved in mucin-type O-glycan biosynthesis were highly expressed during organogenesis and in differentiated cells, a few select genes in each enzyme class were specifically enriched during early embryogenesis. Our results indicate a unique temporal and spatial role for mucin-type O-glycans during embryogenesis and organogenesis and in adulthood. In summary, this is the first report on O-glycans in planaria. This study expands the structural and biosynthetic possibilities in cellular glycosylation in the invertebrate glycome and provides a framework towards understanding the biological role of mucin-type O-glycans in tissue regeneration using planarians.


Assuntos
Planárias , Animais , Glicômica , Mediterranea , Mucinas/metabolismo , Planárias/genética , Planárias/metabolismo , Polissacarídeos/química
12.
J Biol Chem ; 297(4): 101113, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437902

RESUMO

There are five known general catalytic mechanisms used by enzymes to catalyze carbohydrate epimerization. The amino sugar epimerase N-acetylmannosamine-6-phosphate 2-epimerase (NanE) has been proposed to use a deprotonation-reprotonation mechanism, with an essential catalytic lysine required for both steps. However, the structural determinants of this mechanism are not clearly established. We characterized NanE from Staphylococcus aureus using a new coupled assay to monitor NanE catalysis in real time and found that it has kinetic constants comparable with other species. The crystal structure of NanE from Staphylococcus aureus, which comprises a triosephosphate isomerase barrel fold with an unusual dimeric architecture, was solved with both natural and modified substrates. Using these substrate-bound structures, we identified the following active-site residues lining the cleft at the C-terminal end of the ß-strands: Gln11, Arg40, Lys63, Asp124, Glu180, and Arg208, which were individually substituted and assessed in relation to the mechanism. From this, we re-evaluated the central role of Glu180 in this mechanism alongside the catalytic lysine. We observed that the substrate is bound in a conformation that ideally positions the C5 hydroxyl group to be activated by Glu180 and donate a proton to the C2 carbon. Taken together, we propose that NanE uses a novel substrate-assisted proton displacement mechanism to invert the C2 stereocenter of N-acetylmannosamine-6-phosphate. Our data and mechanistic interpretation may be useful in the development of inhibitors of this enzyme or in enzyme engineering to produce biocatalysts capable of changing the stereochemistry of molecules that are not amenable to synthetic methods.


Assuntos
Proteínas de Bactérias/química , Carboidratos Epimerases/química , Hexosaminas/química , Staphylococcus aureus/enzimologia , Fosfatos Açúcares/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Carboidratos Epimerases/genética , Catálise , Hexosaminas/genética , Hexosaminas/metabolismo , Mutação de Sentido Incorreto , Conformação Proteica em Folha beta , Domínios Proteicos , Staphylococcus aureus/genética , Fosfatos Açúcares/genética , Fosfatos Açúcares/metabolismo
13.
Arch Biochem Biophys ; 701: 108825, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33675814

RESUMO

Enzymes typically have high specificity for their substrates, but the structures of substrates and products differ, and multiple modes of binding are observed. In this study, high resolution X-ray crystallography of complexes with NADH and alcohols show alternative modes of binding in the active site. Enzyme crystallized with the good substrates NAD+ and 4-methylbenzyl alcohol was found to be an abortive complex of NADH with 4-methylbenzyl alcohol rotated to a "non-productive" mode as compared to the structures that resemble reactive Michaelis complexes with NAD+ and 2,2,2-trifluoroethanol or 2,3,4,5,6-pentafluorobenzyl alcohol. The NADH is formed by reduction of the NAD+ with the alcohol during the crystallization. The same structure was also formed by directly crystallizing the enzyme with NADH and 4-methylbenzyl alcohol. Crystals prepared with NAD+ and 4-bromobenzyl alcohol also form the abortive complex with NADH. Surprisingly, crystals prepared with NAD+ and the strong inhibitor 1H,1H-heptafluorobutanol also had NADH, and the alcohol was bound in two different conformations that illustrate binding flexibility. Oxidation of 2-methyl-2,4-pentanediol during the crystallization apparently led to reduction of the NAD+. Kinetic studies show that high concentrations of alcohols can bind to the enzyme-NADH complex and activate or inhibit the enzyme. Together with previous studies on complexes with NADH and formamide analogues of the carbonyl substrates, models for the Michaelis complexes with NAD+-alcohol and NADH-aldehyde are proposed.


Assuntos
Álcool Desidrogenase/química , Álcoois/química , Cavalos , Fígado/enzimologia , Modelos Químicos , NAD/química , Animais , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X
14.
Biochemistry ; 60(9): 663-677, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33620215

RESUMO

Structures of yeast alcohol dehydrogenase determined by X-ray crystallography show that the subunits have two different conformational states in each of the two dimers that form the tetramer. Apoenzyme and holoenzyme complexes relevant to the catalytic mechanism were described, but the asymmetry led to questions about the cooperativity of the subunits in catalysis. This study used cryo-electron microscopy (cryo-EM) to provide structures for the apoenzyme, two different binary complexes with NADH, and a ternary complex with NAD+ and 2,2,2-trifluoroethanol. All four subunits in each of these complexes are identical, as the tetramers have D2 symmetry, suggesting that there is no preexisting asymmetry and that the subunits can be independently active. The apoenzyme and one enzyme-NADH complex have "open" conformations and the inverted coordination of the catalytic zinc with Cys-43, His-66, Glu-67, and Cys-153, whereas another enzyme-NADH complex and the ternary complex have closed conformations with the classical coordination of the zinc with Cys-43, His-66, Cys-153, and a water or the oxygen of trifluoroethanol. The conformational change involves interactions of Arg-340 with the pyrophosphate group of the coenzyme and Glu-67. The cryo-EM and X-ray crystallography studies provide structures relevant for the catalytic mechanism.


Assuntos
Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/ultraestrutura , Microscopia Crioeletrônica/métodos , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Catálise , Cristalografia por Raios X , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
15.
Prog Biophys Mol Biol ; 160: 66-78, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32735943

RESUMO

Dimethylformamidase (DMFase) catalyzes the hydrolysis of dimethylformamide, an industrial solvent, introduced into the environment by humans. Recently, we determined the structures of dimethylformamidase by electron cryo microscopy and X-ray crystallography revealing a tetrameric enzyme with a mononuclear iron at the active site. DMFase from Paracoccus sp. isolated from a waste water treatment plant around the city of Kanpur in India shows maximal activity at 54 °C and is halotolerant. The structures determined by both techniques are mostly identical and the largest difference is in a loop near the active site. This loop could play a role in co-operativity between the monomers. A number of non-protein densities are observed in the EM map, which are modelled as water molecules. Comparison of the structures determined by the two methods reveals conserved water molecules that could play a structural role. The higher stability, unusual active site and negligible activity at low temperature makes this a very good model to study enzyme mechanism by cryoEM.


Assuntos
Amidoidrolases/química , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Amidoidrolases/metabolismo , Conformação Proteica , Multimerização Proteica/fisiologia , Transdução de Sinais , Água/química
16.
ACS Omega ; 5(48): 30923-30936, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33324800

RESUMO

Several pathogenic bacteria import and catabolize sialic acids as a source of carbon and nitrogen. Within the sialic acid catabolic pathway, the enzyme N-acetylmannosamine kinase (NanK) catalyzes the phosphorylation of N-acetylmannosamine to N-acetylmannosamine-6-phosphate. This kinase belongs to the ROK superfamily of enzymes, which generally contain a conserved zinc-finger (ZnF) motif that is important for their structure and function. Previous structural studies have shown that the ZnF motif is absent in NanK of Fusobacterium nucleatum (Fn-NanK), a Gram-negative bacterium that causes the gum disease gingivitis. However, the effect in loss of the ZnF motif on the kinase activity is unknown. Using kinetic and thermodynamic studies, we have studied the functional properties of Fn-NanK to its substrates ManNAc and ATP, compared its activity with other ZnF motif-containing NanK enzymes from closely related Gram-negative pathogenic bacteria Haemophilus influenzae (Hi-NanK), Pasteurella multocida (Pm-NanK), and Vibrio cholerae (Vc-NanK). Our studies show a 10-fold decrease in substrate binding affinity between Fn-NanK (apparent KM ≈ 700 µM) and ZnF motif-containing NanKs (apparent KM ≈ 60 µM). To understand the structural features that combat the loss of the ZnF motif in Fn-NanK, we solved the crystal structures of functionally homologous ZnF motif-containing NanKs from P. multocida and H. influenzae. Here, we report Pm-NanK:unliganded, Pm-NanK:AMPPNP, Pm-NanK:ManNAc, Hi-NanK:ManNAc, and Hi-NanK:ManNAc-6P:ADP crystal structures. Structural comparisons of Fn-NanK with Hi-NanK, Pm-NanK, and hMNK (human N-acetylmannosamine kinase domain of UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase, GNE) show that even though there is less sequence identity, they have high degree of structural similarity. Furthermore, our structural analyses highlight that the ZnF motif of Fn-NanK is substituted by a set of hydrophobic residues, which forms a hydrophobic cluster that helps the proper orientation of ManNac in the active site. In summary, ZnF-containing and ZnF-lacking NanK enzymes from different Gram-negative pathogenic bacteria are functionally very similar but differ in their metal requirement. Our structural studies unveil the structural modifications in Fn-NanK that compensate the loss of the ZnF motif in comparison to other NanK enzymes.

17.
Cureus ; 12(10): e11104, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33240700

RESUMO

Background and objective Pre-eclampsia and eclampsia are common complications in pregnancy, and they lead to uteroplacental vascular insufficiency. More than 38% of pregnant women succumb to seizures without meeting the clinical criteria for pre-eclampsia or eclampsia. This highlights the importance of a confirmatory diagnosis of pre-eclampsia or eclampsia using the histopathological changes seen in the placenta. Hence, the present study aimed to validate an objective histopathological scoring system of the placenta for an appropriate diagnosis of pre-eclampsia or eclampsia. Material and methods In this prospective study spanning two years, 50 cases of pre-eclampsia/eclampsia and 50 control subjects with normal placenta were included. The histomorphological changes in the placenta were examined for both groups and a scoring system was formulated to assess the severity of pre-eclampsia/eclampsia syndrome. A maximum score of 2 and a minimum score of 0 was assigned for maternal floor infarcts, calcification, villous basement membrane thickening, and fibrin deposition. Syncytial knots were assigned a minimum score of 0 and a maximum score of 1. The association of various placental histopathological variables with a clinical diagnosis of pre-eclampsia, eclampsia, and control was analyzed using the chi-squared/Fisher's exact test. A one-way analysis of variance (ANOVA) test was used for comparing objective histopathological scores between pre-eclampsia, eclampsia, and control groups. A p-value of less than 0.05 was considered to be statistically significant. Results We found a significant association between each histopathological parameters of the placenta, including fibrin deposition, maternal floor infarction, calcification, villous basement membrane thickening, and syncytial knots, and clinical diagnosis of pre-eclampsia, eclampsia, and control groups. A median score of 2 significantly correlated with the normal group, while median scores of 4 and 6 correlated with pre-eclampsia and eclampsia respectively. Conclusion This comprehensive scoring system can be a basis for validating reporting patterns of the placenta in pre-eclampsia and eclampsia patients, as well as other disorders related to maternal uteroplacental insufficiency.

18.
Angew Chem Int Ed Engl ; 59(39): 16961-16966, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32452120

RESUMO

N,N-dimethyl formamide (DMF) is an extensively used organic solvent but is also a potent pollutant. Certain bacterial species from genera such as Paracoccus, Pseudomonas, and Alcaligenes have evolved to use DMF as a sole carbon and nitrogen source for growth via degradation by a dimethylformamidase (DMFase). We show that DMFase from Paracoccus sp. strain DMF is a halophilic and thermostable enzyme comprising a multimeric complex of the α2 ß2 or (α2 ß2 )2 type. One of the three domains of the large subunit and the small subunit are hitherto undescribed protein folds of unknown evolutionary origin. The active site consists of a mononuclear iron coordinated by two Tyr side-chain phenolates and one carboxylate from Glu. The Fe3+ ion in the active site catalyzes the hydrolytic cleavage of the amide bond in DMF. Kinetic characterization reveals that the enzyme shows cooperativity between subunits, and mutagenesis and structural data provide clues to the catalytic mechanism.


Assuntos
Amidoidrolases/metabolismo , Dimetilformamida/metabolismo , Paracoccus/enzimologia , Tirosina/metabolismo , Amidoidrolases/química , Domínio Catalítico , Dimetilformamida/química , Estrutura Molecular , Tirosina/química
19.
Front Biosci (Landmark Ed) ; 25(6): 1011-1021, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32114422

RESUMO

Cancer stem cells (CSCs) or tumor-initiating cells (TICs) represent a minority population of cells in a tumor that can self-renew and re-create the heterogeneity of the entire tumor. Cell lines, patient-derived tumor cells, and patient-derived xenografts have all been used to isolate presumptive CSC populations from different tumor types. Because of their purported roles in tumor recurrence and prognosis, numerous efforts have centered around reliably identifying CSCs using cell surface markers, and in using genomics tools to identify molecular features unique to these cells. In this brief review, we will discuss different markers, CD44, ALDH1, CD271 and others that have used for identifying and isolating CSCs from primary head & neck and oral squamous cell carcinomas. In particular, we focus on the challenges associated with these experiments as this will be useful to researchers attempting similar isolations. We also discuss some important molecular features gleaned from studying these CSCs such as the expression of stem cell-related markers, loss of cell adhesion and terminal differentiation markers, and the presence of both epithelial and epithelial-to-mesenchymal transition (EMT) features.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Receptores de Hialuronatos/metabolismo , Neoplasias Bucais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Contagem de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Células-Tronco Neoplásicas/patologia , Prognóstico
20.
J Biol Chem ; 295(10): 3301-3315, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31949045

RESUMO

In environments where glucose is limited, some pathogenic bacteria metabolize host-derived sialic acid as a nutrient source. N-Acetylmannosamine kinase (NanK) is the second enzyme of the bacterial sialic acid import and degradation pathway and adds phosphate to N-acetylmannosamine using ATP to prime the molecule for future pathway reactions. Sequence alignments reveal that Gram-positive NanK enzymes belong to the Repressor, ORF, Kinase (ROK) family, but many lack the canonical Zn-binding motif expected for this function, and the sugar-binding EXGH motif is altered to EXGY. As a result, it is unclear how they perform this important reaction. Here, we study the Staphylococcus aureus NanK (SaNanK), which is the first characterization of a Gram-positive NanK. We report the kinetic activity of SaNanK along with the ligand-free, N-acetylmannosamine-bound and substrate analog GlcNAc-bound crystal structures (2.33, 2.20, and 2.20 Å resolution, respectively). These demonstrate, in combination with small-angle X-ray scattering, that SaNanK is a dimer that adopts a closed conformation upon substrate binding. Analysis of the EXGY motif reveals that the tyrosine binds to the N-acetyl group to select for the "boat" conformation of N-acetylmannosamine. Moreover, SaNanK has a stacked arginine pair coordinated by negative residues critical for thermal stability and catalysis. These combined elements serve to constrain the active site and orient the substrate in lieu of Zn binding, representing a significant departure from canonical NanK binding. This characterization provides insight into differences in the ROK family and highlights a novel area for antimicrobial discovery to fight Gram-positive and S. aureus infections.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Staphylococcus aureus/enzimologia , Motivos de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Hexosaminas/química , Hexosaminas/metabolismo , Cinética , Fosfotransferases (Aceptor do Grupo Álcool)/química , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Zinco/química , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...